

Compact Absorber Retrofit Equipment (CARE)

July 10, 2012

Dr. Jason Brasseur, Dr. Andrew Awtry 890 Elkton Dr., Colorado Springs, CO 80907 719-593-7848

The *NeuStreamTM* Advantage

NeuStreamTM Enables Significantly Lower Cost of Ownership

Desulfurization System Comparison

Conventional Dry Scrubber

NeuStream[™]-S

CO₂ System Comparison

Hitachi 800MW CO₂ System

NeuStream[™]-C 800MW CO₂ System

Modular \$1.00 Reduce order to commission time Maximize plant availability \$0.75 Compact Consume less plant real estate \$0.50 Minimize plant reconfiguration Efficient \$0.25 Lower parasitic power Much lower water usage \$0.00 Adaptable Site-specific Cost conditions Variety of NeuStream saleable byproducts

Cost of Ownership (Per Dollar Differential)

Conventional Dry Scrubber

CARE Schedule

Key Milestones							
Project Start	5/21/2012						
Kickoff Meeting: Final Requirements Review/Concept Design Review	6/14/2012						
Preliminary Design Review	8/20/2012						
Detailed (Critical) Design Review	2/18/2013						
Test Readiness Review	11/15/2013						
Final Project Briefing	11/17/2014						

CARE Project Objectives

- Design and fabricate 0.5 MW system
- Minimize parasitic power through efficient design
- Demonstrate
 - Steady 2 month state operation with 3-Stage
 Absorber and Multi-stage Stripper
 - 90% CO₂ capture efficiency utilizing best available solvent
- Show unit traceability to commercial scale

CARE Partners

- Energy and Environmental Research Center (EERC)
 - Techno-Economic
 Feasibility Study
 - EH&S risk assessment for carbon capture and storage
 - Brandon Pavlish (Lead and Consultant)
- URS Bob Keeth
 - Consultant

- Colorado Springs Utilities
 - Host Site (Martin Drake Power Plant)
 - Significant Cost Share
- Service Partners
 - Althouse Electric
 - Vision Mechanical
 - ICM Construction
 - Palmer Holland (Chemical Provider)

Array of Jets

- Jets are 7 cm wide with a 4 PSI pressure drop across the nozzles
- Gas is contacted with jets via crossflow at 3-15 m/s
- Jet velocity of 5-6 m/s
- The jet array for the CO₂ scrubber have jets spaced at 3 mm along the Jet Tube (4 mm shown on left)
- Jet Tubes are spaced at 3.5 cm, and are interlaced resulting in a theoretical specific surface area of 900 m²/m³

NeuStream – C Development

3:07 PM 3:21 PM 3:36 PM 3:50 PM 4:04 PM 4:19 PM 4:33 PM 4:48 PM

- De-rated our 2MW FGD scrubber for a 0.45 MW slipstream
- Capture only; using 3.2m
 K₂CO₃/1.6m PZ solvent
- Single stage capture with approximately 1000 SCFM Flow (~1600 ACFM - residence time of 0.4 sec)
- Capture efficiency ranged from 65% to 30% depending on solvent loading

NeuStream – C Development

- Bench scale closed system with vacuum stripping
- ~1kW flow rate (65 slpm); simulated flue gas
- 3.2m K₂CO₃/1.6m PZ
- Single Stage
- >70 % Capture Efficiency

NeuStream – C Development

- Post Design Alterations:
 - Reflux tank added post stripper
 - Reflux tank added post absorber
 - Increased pump size for rich pump

- Contract is for 90% removal at 160 SCFM
- Design Points:
 - 3 stage absorber; 4 stage stripper
 - ½ Jet box channels to increase gas velocity through jets
 - ULFT Nozzles: 4 psi operating pressure, 7 cm wide jet
 - 27 Nozzles/Tube, staggered with 3.5 cm Tube/Tube spacing and 3 mm Nozzle/Nozzle spacing

EERC Testing

- System transport to UND-EERC and setup completed on Sept 12, 2011
- Scheduled Test Dates:
 - Sept 26-Oct 6, 2011 (EERC training and acceptance testing)
 - Nov 7-11, 2011
 - Dec 19-23, 2011
 - Jan 9-13, 2012
 - Feb 6-12, 2012 (no alternative solvent, system modifications)
 - Feb 27-Mar 2, 2012
 - Mar 19-23, 2012 (reschedule to allow for system modifications TBD)

EERC Test Results

- System Performance
 - Capture Subsystem is performing on the same level as baseline testing
 - Stripper Subsystem is also consistent with baseline testing
 - Comparison of Stripper subsystem to EERC traditional packed tower stripper indicates that the NSG stripper is undersized
 - Working capacity of NSG stripper:
 - $0.06 0.07 \text{ mol CO}_2/\text{mol Alk}$
 - Typical working capacity of a packed tower stripper: 0.12 – 0.15 mol CO₂/mol Alk
 - The under-performing stripper is reducing the performance of the system, resulting in lower than expected capture efficiencies

EERC Modifications

- Stripper Subsystem Modification #1:
 - Carryover flooding in gas path due to high liquid levels
 - Liquid flows limited to 12
 GPM max
 - Added 12" section to vessels to allow for required liquid head to maintain higher flows.
 - Have since operated up to 18
 GPM with no flooding or
 increased carryover

Working Capacity ~ 0.06 mol CO₂/mol Alk

 2 min 45 sec for stripper subsystem

EERC Modifications

- Stripper Subsystem Modification #2
 - Original configuration
 - Mimicked a traditional packed tower with 4 stages (trays)
 - Heat added via reboiler stage only
 - First two stages were for heat transfer (heat of condensation)
 - Last two stages primarily where stripping CO₂ occurred.
 - Modified Configuration
 - Heat added to rich stream to bring to target stripper temperature
 - Reboiler used to maintain heat throughout the stripper and reduce re-absorption of CO₂

EERC Testing: Loading (After Stripper Modification 2)

Working Capacity ~ 0.06 mol CO₂/mol Alk

- Liquid Flow: 16 GPM
- Gas Flow: 160 SCFM (13.3 % CO₂
- Difficult to compare results to previous testing:
 - Lower CO2 concentration in flue gas leads to lower loadings
 - Lower loadings results in better capture efficiency
- Working capacity is about the same as previous configuration
- All stripping occurs in first vessel... no benefit from remaining vessels or reboiler.

EERC Modifications

NEUMANIN SYSTEMS GROUP, INC.

- Separate gas flow between vessels
- Single Pass through vessels 2-4

- Recirculation on vessel 1
- Vary pressures per stage (decreasing)

EERC Solvent Testing

	Cond	itions	С	apture Efficier	cy - O ₂ Correc	Stg 3 Loading		
		Liquid Flow					mol CO2/	Expected CE*
Date	Gas Flow Rate	rate	Overall	Stage 3	Stage 2	Stage 1	mol Alk	
2/28/2012	190.1	15.9	68.3%	29.9%	22.5%	41.7%	0.405	72.0%
2/28/2012	159.3	16.1	72.9%	34.9%	23.9%	45.2%	0.392	77.1%
2/29/2012	130.1	16.1	79.6%	41.7%	25.1%	53.2%	0.377	84.5%
3/1/2012	130.6	17.2	88.1%	54.4%	29.4%	63.0%	0.301	92.1%
2/29/2012	158.8	17.1	85.5%	48.7%	33.8%	57.2%	0.275	88.4%
3/1/2012	189.2	17.5	83.9%	44.3%	32.0%	57.5%	0.308	87.0%
3/1/2012	218.0	17.8	79.9%	41.4%	28.8%	51.9%	0.301	83.3%

• MEA (4.3M) and Piperazine (4.0M) Testing

- Tested at 16 gpm liquid transfer rate with various gas flow rates
- Investigated capture efficiency per stage
- Working capacity of stripper is less than typical; indicating that we are operating at higher loadings and reduced capture efficiencies.
- Stage 2 absorber CE data indicated a problem in the system; gasket on stage 2 absorber had slipped resulting in up to 50% gas bypassing this stage
- "Expected CE*" column is the expected CE when stage two is fixed
- Piperazine (Pz) solvent had drastically improved performance

NSG Absorber (Flat Jet)

Project CARE Modular Design (Conceptual)

- Currently achieving (experimental) 400 m²/m³ surface area at 4+ m/s flow
- Results in a 2x reduction in reaction volume of absorber compared to packed tower
- Has approximately a 15 m/s gas velocity limit, where the absorber can be operated with any gas velocity below 15 m/s
- Measured pressure drop due to jets with a 4 m/s gas velocity: 5 inH₂O through 6 m of jets

Implementation to Plant

• Advantages:

- <u>90% capture</u>: greater than 2-4x reduction in absorber volume, resulting in less capital cost and footprint
- Variable gas velocity (up to 15 m/s) through jets due to low pressure drop and no flooding, where increased gas flow moves to a more efficient capture regime and increases the total carbon capture (EOR)
- Solvent agnostic
 - tested with: 7m MEA (CO₂), 7m PZ (CO₂), FGD dual alkali solvent, BHP (chemical laser); scheduled to test with a Huntsman Solvent (CO₂) and a potassium carbonate with CA enzyme (CO₂)
- <u>Challenges:</u>

- No data on a full scale system (perceived risk)

CARE Schedule – Task 2.0

- Task 2.0 System Requirements and Design (BP 1)
 - > 2.1 System Requirements (FOA, EERC results, ASPEN, DVT)
 - 2.2 Preliminary Design
 - ➤ 2.3 Detailed Design
 - 2.4 Absorber Modeling and Analysis (EERC results, ASPEN, DVT and COMSOL)
 - > 2.5 Stripper Modeling and Analysis (EERC results and ASPEN)
 - > 2.6 Process Modeling and Analysis (ASPEN)
 - 2.7 Absorber Verification Testing (Feeds design efforts)
 - > 2.8 Process Verification Testing (Reclaimer and Amine Wash)
 - > 2.9 Preliminary Assessment of EH&S Risks (HCCL)
 - > 2.10 Preliminary Technical and Economic Assessment (EERC)

CARE Schedule – Task 2.0

Task Name 🗸	Start 🗸	B	ay M E	June B M E	July B M	August	September E B M E	October B M E	November B M E	December B M E	January B M E	February B M E	March B M E
Task 1.0 Project Management and Planning	Mon 5/21/12							:					
START OF BUDGET PERIOD 1	Mon 5/21/12	5/21	- • *										
Task 2.0 System Requirements and Design (BP 1)	Mon 5/21/12		1					:	-	-	-		
Cost Share (BP 1)	Mon 5/21/12							:					
2.1 System Requirements	Mon 5/21/12												
2.1.1 System Requirements Compilation	Mon 5/21/12			-Fr									
2.1.2 System Requirements Review	Mon 6/18/12			Ĭ									
2.2 Preliminary Design	Tue 6/19/12			- -)						
2.2.1 Absorber Preliminary Design	Tue 6/19/12												
2.2.2 Recirculation Loop Preliminary Design	Tue 6/19/12												
2.2.3 Auxiliary Equipment Preliminary Design	Tue 6/19/12												
2.2.4 Preliminary Design Review (PDR)	Mon 8/20/12					•	J						
□ 2.3 Detailed Design	Tue 8/21/12					- 4 .		:	:				
2.3.1 Absorber Detailed Design	Tue 8/21/12					(:	:				
2.3.2 Recirculation Loop Detailed Design	Tue 8/21/12					(:	:				
2.3.3 Auxiliary Equipment Detailed Design	Tue 8/21/12					(-				
2.3.4 Critical Design Review (CDR)	Mon 2/18/13											l ∎/	
2.4 Absorber Modeling and Analysis	Tue 6/19/12			ᇦ				: :	2				
2.4.1 COMSOL Models on Gas flow through Preliminary Abs	Tue 6/19/12							:	1				
2.4.2 COMSOL Models on Liquid Flow through Sump-Recirc	Tue 6/19/12								1				
2.4.3 DVT Results Evaluation	Tue 6/19/12				-				1				
2.5 Process Modeling and Analysis	Mon 6/18/12			<u> </u>				—					
2.5.1 Evaluation of EERC Data (Flash vs Reboiler)	Mon 10/1/12												
2.5.2 ASPEN Model of System	Mon 6/18/12			<u> </u>	-			—					
2.6 Absorber Design Verification Testing	Mon 5/21/12							:	•				
2.6.1 Absorber Configuration Design Testing	Mon 5/21/12							:	Ý				
	Mon 5/21/12							:	•				
2.7 Process Design Verification Testing	Mon 6/18/12			<u> </u>	-			:	•				
	Mon 6/18/12			<u> </u>					•				
	Mon 6/18/12			<u> </u>	-				•				
2.8 Preliminary Environmental, Health, and Safety Risk An	Mon 5/21/12		4										
2.9 Preliminary Technical and Economic Analysis	Mon 5/21/12	۱ I			P								
2.9.1 Preliminary Commercial System Model Update	Mon 5/21/12		-	-									
2.9.2 Preliminary Technical and Economic Analysis Update	Mon 6/11/12			Ċ									
* 2.10 Subcontracts	Mon 5/21/12				· ·			:	:	:		— —	

Tasks Required to Meet CARE Objectives

- Develop Systems Requirements
- Develop Preliminary then Detailed Design
 - Design Verification Testing (Task 2.7; Feeds Tasks 2.1-2.4)
 - Build stand with stainless sump and piping for CO2 capture
 - Modify existing test stand for FGD/DCC use
 - Build transition ducting between FGD and CO2 absorber
 - Test Stand will need "simple" stripping subsystem so that steady state can be reached
 - Develop Performance Optimization Plan:
 - » Vary packing densities
 - » Vary jet lengths
 - » Vary gas flows
 - Results feed directly to 0.5MW demonstrator design

Absorber Verification Stand

HEXs, Condenser and Stripper Flash not shown

Tasks Required to Meet CARE Objectives (cont)

- Develop Preliminary then Detailed Design (cont)
 - Design "sumpless" pump
 - Communicate with pump manufacturer to drive design
 - Fabricate prototypes:
 - » Develop Stand to utilize prototype pumps
 - » Metrics for test stand:
 - » Flow Requirements
 - » Plenum pressure
 - » Pump Efficiency comparable
 - to traditional centrifugal pumps
 - Flow Modeling Gas and Liquid Flow
 - Modeling Liquid Flow through drain pump plenum
 - Modeling Gas Flow through jets and transition pieces
 - Process Modeling
 - ASPEN modeling of System components and interactions
 - Sizing of HEXs, Amine Wash, etc.

Tasks Required to Meet CARE Objectives (cont)

- Process Verification Testing
 - Reclaimer and Amine Wash bench scale testing
- Develop Assessment of Environmental, Health and Safety (EH&S) Risks
 - To be completed by EERC
 - Preliminary EH&S assessment to be completed in Budget Period 1
 - Final EH&S assessment to be completed at project closeout
- Develop Technical and Economic Assessment (TEA)
 - To be completed by EERC (Brandon Pavlish)
 - Preliminary TEA to be completed within 8-weeks of contract start
 - Final TEA to be completed at project closeout

Design results in a 5 m/s gas velocity under nominal testing conditions

Wrapped assembly for the 0.5 MW Demonstrator

-More compact packaging

-Flow concerns introduced by turns

-Design still has counterflow gradient built in

-Dimensions: Width = 1.8 m Length = 3.2 m Height = 1.1 m

Pump Design

-Working with pump manufacturer to develop

-5x impellers

-Design will maintain separate channels

-Metric for pump is operating efficiency

-Expected efficiency about 70% (resulting in parasitic power of 0.5% per stage – 3 stages has 1.5%

Traceability to a Commercial Scale Reactor

3-stage, 45-MW CO₂ Module to achieve 90% capture

550 MW system Model

System Dimensions (W x H x L): 17.1m x 10.7m x 10.4m

Scale up potential

- Modular approach to the Flat Jet Absorber
 - Reduces risk for scaling up scope of absorber
 - Rapid deployment of modular parts due to in-house fabrication
 - Commercial design will utilize same configuration

End